Mathematical Incompleteness Results in First-Order Peano Arithmetic: A Revisionist View of the Early History

نویسندگان

چکیده

In the Handbook of Mathematical Logic, Paris-Harrington variant Ramsey's theorem is celebrated as first result a long ‘search’ for purely mathematical incompleteness in first-order Peano arithmetic. This paper questions existence any such search and status result. fact, I argue that Gentzen gave result, it was restated by Goodstein number-theoretic form.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

romantic education:reading william wordsworths the prelude in the light of the history of ideas

عصر روشنگری زمان شکل گیری ایده های مدرن تربیتی- آموزشی بود اما تاکید بیش از اندازه ی دوشاخه مهم فلسفی زمان یعنی عقل گرایی و حس گرایی بر دقت و وضوح، انسان عصر روشنگری را نسبت به دیگر تواناییهایش نابینا کرده و موجب به وجود آمدن افرادی تک بعدی شد که افتخارعقلانیتشان، تاکید شان بر تجربه فردی، به مبارزه طلبیدن منطق نیاکانشان وافسون زدایی شان از دنیا وتمام آنچه با حواس پنجگانه قابل درک نبوده و یا در ...

Order-types of models of Peano arithmetic: a short survey

Here, PA is the first-order theory in the language with 0, 1,+, ·, < containing finitely many basic axioms true in N together with the first-order induction axiom scheme. Any model of PA has an initial segment isomorphic to N, and we will always identify N with this initial segment. The theory PA is well-known not to be complete, and has 2א0 complete extensions. ‘True arithmetic’—the theory Th(...

متن کامل

Peano Arithmetic

The project is designed for an upper level undergraduate course in mathematical logic. Although the project is relatively short, some of the exercises are not as easy as they appear. Instructors may wish to spend some class time on discussing how formal proofs should be conducted, and also provide some additional assistance with completing some of the exercises. The last part of the project ass...

متن کامل

Interpretability suprema in Peano Arithmetic

This paper develops the philosophy and technology needed for adding a supremum operator to the interpretability logic ILM of Peano Arithmetic (PA). It is wellknown that any theories extending PA have a supremum in the interpretability ordering. While provable in PA, this fact is not reflected in the theorems of the modal system ILM, due to limited expressive power. Our goal is to enrich the lan...

متن کامل

Extendible Sets in Peano Arithmetic

Let sf be a structure and let U be a subset of \sf\. We say U is extendible if whenever 3S is an elementary extension of so? .there is a V Ç \£§\ such that (sf, U) -< (SS, V). Our main results are: If Jt is a countable model of Peano arithmetic and U is a subset of |-#|, then U is extendible iff U is parametrically definable in J( . Also, the cofinally extendible subsets of \J?\ are exactly the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: History and Philosophy of Logic

سال: 2021

ISSN: ['0144-5340', '1464-5149']

DOI: https://doi.org/10.1080/01445340.2021.1976052